Фибра для бетона — разновидности, плюсы и минусы, особенности применения

Фибра для бетона — это армирующая присадка, превращающая обычный песчано-цементный раствор в высокопрочный, стойкий к усадке и не склонный к образованию микротрещин. Порция мелко нарезанных армирующих волокон вводится в песчано-цементную смесь на этапе приготовления рабочего раствора. Характеристики полученного таким путем бетона зависят от разновидности фибры, длины, диаметра волокна и массовой доли армирующей присадки в готовом растворе. Поэтому далее по тексту мы рассмотрим основные разновидности фиброволокна, оценим их плюсы и минусы и приведем рекомендации по использованию каждой армирующей присадки для бетона.

Разновидности фиброволокна для бетона

Современные строители используют для армирования бетона следующие разновидности микроарматуры:

  • Базальтовое волокно — для усиления бетонных стяжек и штучных изделий используют волокно диаметром 12-20 мкм и длиной от 3 до 30 мм. Для производства такого фиброволокна необходимо нагреть магматическую породу до предела пластичности и продавить жидкую массу сквозь фильтрующую матрицу — фильер.
  • Стекловолокно — для армирования блоков из ячеистых бетонов: пенобетон, полистиролбетон, керамзитобетон, реже – цементно-песчаных стяжек используют рубленое волокно из обычного, борного или органического стекла, с длиной нити до 12-13 миллиметров. Этим материалом армируют также штукатурку и шпатлевку.
  • Полимерную нить — фибра для бетона производится обычно из полипропилена, реже – полиамида и полиакрилонитрильного волокна, путем экструзии расплавленной массы сквозь матрицу с ячейками диаметром от 0,012 до 0,78 мм. Полученную нить нарезают на отрезки длиной от 3 до 18 миллиметров. Полимерное фиброволокно добавляют в любые цементносодержащие растворы, сухие строительные смеси, самовыравнивающиеся составы, в бетонные полы и стяжки пола (особенно волокно популярно в полусухих стяжках), штукатурку, декоративные и штучные изделия.
  • Стальную проволоку — для армирования бетонных конструкций и монолита используют рубленую металлическую фибру длиной 1,5-6 сантиметров и диаметром 0,3-1,2 миллиметра. У стальной фибры анкерного типа загнутые края, у рубленой из листа - шероховатая фактура, есть вариант фибры с волновым профилем — все это повышает адгезию к бетону и препятствует «вырываемости». Такую микроарматуру используют в бетонных промышленных полах, в несущих конструкциях в качестве вспомогательной арматуры.

Микроарматурой армируют бетоны и железобетонные изделия. Волокно вводится в готовый рабочий раствор или в сухую песчано-цементную смесь. Эта присадка используется и в заводских условиях, и во время приготовления бетонного раствора на стройплощадке. Каждый тип фибры имеет свои преимущества, поэтому перед выбором микроарматуры необходимо оценить их плюсы и минусы.

Выгоды от использования полипропиленового фиброволокна

Полимерная микроарматура приносит бетонным изделиям важные преимущества, к которым относят:

  • повышенный срок службы — ввод микроарматуры увеличивает морозостойкость и гидроизоляционные характеристики бетонных конструкций;
  • увеличение прочностных характеристик — фиброволокно принимает часть нагрузки, увеличивая прочность на изгиб, сжатие и кручение;
  • нивелирование процесса усадки — она снижается до незначительных величин, поэтому полипропиленовые волокна можно использовать даже в производстве декора со сложной фактурой;
  • снижение расхода раствора — смесь не растекается и не просачивается сквозь щели опалубки, что дает небольшую экономию цемента, песка и присадок;
  • повышение износостойкости — упрочненный поверхностный слой убережет стяжку или ЖБИ от истирания, сколов, эксплуатационных трещин и других дефектов.

Минусом полимерной микроарматуры можно назвать незначительное, по сравнению со стальной, стекловолоконной и базальтовой фиброй, повышение прочностных характеристик бетонной конструкции на сжатие. Армирующая присадка на основе полипропилена увеличивает естественный модуль упругости бетона только на 25%. Остальные присадки поднимают этот показатель в несколько раз.

Кроме проблем с прочностью у полимерных волокон есть еще один недостаток — низкая адгезия с цементной матрицей, из-за чего фибробетон теряет изначальную стойкость к истиранию и высокое сопротивление растяжению. Поэтому строители предпочитают использовать полипропиленовое фиброволокно только в качестве вспомогательного средства для дополнительного (конструкционного) армирования. В несущие конструкции такую фибру добавляют в смеси со стандартной конструкционной арматурой.

Достоинства и недостатки стальной фибры

Микроарматура из стали делится на три группы. В первую входит волнистая проволока, во вторую — плоская лента, изогнутая волной, в третью — прямая проволока с загнутыми концами (анкерная группа). Независимо от фактуры стальная фибра гарантирует бетонным конструкциям:

  • повышенную прочность на растяжение и изгиб — проволока принимает нагрузку на себя, снижая напряжение в бетоне;
  • снижение количество усадочных трещин — при усадке трещина пойдет вглубь бетона не до арматурного прута, а остановится на проволоке;
  • увеличение срока службы — снижение склонности к образованию трещин и поверхностное упрочнение защищают ЖБИ и монолиты от температурных деформаций и истирания.

У стальной арматуры есть и недостатки. Во-первых, это большой расход фибры. Норма расхода неметаллического фиброволокна на куб бетона не превышает 1,5-2 килограмм. У стальной фибры другая ситуация. Для армирования слабонагруженных конструкций нужно потратить минимум 20 килограмм, а при заливке стенок туннеля или бетонной дороги понадобится до 100-120 килограмм проволоки на куб бетона.

Второй недостаток стальной микроарматуры — увеличение веса армируемой конструкции. На фоне 1800-2500 килограмм, а именно столько может весить куб бетона, добавка в 20-150 кг стальной фибры плотностью около 7000 кг не выглядит значительной, но она есть. И ее придется учитывать при проектировании зданий и сооружений.

Преимущества и недостатки базальтовой фибры

В роли микроармирующей добавки базальтовая фибра начала использоваться только в конце ХХ века, с появлением новых технологий производства волокна из магматических пород. Строительные компании быстро оценили перспективы использования этой присадки в бетоне, ведь базальтовое волокно:

  • повышало устойчивость монолита к истиранию, что делало его идеальной присадкой для стяжки пола;
  • увеличивало стойкость к откалыванию и ударному воздействию;
  • имело практически одинаковый коэффициент температурного расширения с бетоном, что исключало появление трещин во время эксплуатации монолита или штучных изделий;
  • повышало теплостойкость, звукоизоляционные характеристики и способность экранировать радиацию;
  • увеличивало прочность на растяжение почти в 5 раз и поднимало на 50% сопротивление сжатию;
  • нивелировало последствия образования микротрещин и раковин, чем повышало качество пенобетона, а также штучных изделий;
  • сокращало в 1,5 раза срок сушки конструкции, повышая скорость строительных работ.

По оценкам экспертов трехмерное армирование базальтовым фиброволокном монолита или штучного изделия (отливки) повышает срок службы бетонной конструкции в 2-3 раза. Единственным минусом этого варианта можно назвать только высокую стоимость базальтовой микроарматуры, цена которой в 2-2,5 раза выше стальной проволоки. Однако с учетом низкой плотности минеральной фибры 1,5 килограмма базальтового волокна на кубический метр бетона. Чтобы добиться аналогичного качества армирования куба бетона придется потратить около 20 килограмм стальной проволоки. При соотношении веса 1,5:20 разница в цене между базальтовой и стальной микроарматурой не выглядит особо впечатляющей.

Плюсы и минусы стеклянной фибры

Для армирования бетона необходимо особое стекловолокно, устойчивое к щелочной среде рабочего раствора. Строительные компании предпочитают армировать штучные изделия, стяжки пола и стен Е-стеклом на основе циркония или волокном марки ВМП. Оба варианта гарантируют фибробетону:

  • Высокую пластичность — из стеклофибробетона можно сделать декоративную плитку со сложной фактурой, основу для стяжки самовыравнивающегося типа, садовую скульптуру.
  • Экономию на цементе — после добавления стекловолокна объем портландцемента в сухой смеси можно снизить на 15 процентов, без потери прочностных характеристик. Такая экономия скажется на общей смете строительства.
  • Снижение последствий усадки раствора при застывании — стеклянная фибра поглощает деформацию ползучести и усадочные напряжения. Благодаря этому повышается общая конструкционная прочность ЖБИ или монолита.
  • Низкую склонность к образованию трещин — после введения в раствор армирующего стекловолокна у монолита и ЖБИ повышается морозостойкость и усиливается водонепроницаемость. Защита от микротрещин сказывается и на общем сроке службы стеклофибробетона.

Введение стекловолокна в растворы для стяжек нивелирует температурные деформации в структуре теплого пола и увеличивает сопротивление эксплуатационным нагрузкам. В товарных смесях такая микроарматура оказывает положительное влияние на рабочие характеристики застывшего монолита. В штукатурках — повышает ударную прочность и влагостойкость. В сборных бетонах — стеклофибра гарантирует целостность монолита при снятии опалубки, защищая отливку от сколов по углам и граням.

К недостаткам технологии армирования бетона стекловолокном относится высокая стоимость щелочестойкого стекловолокна и избирательность применения такой арматуры. Для бетона не подходит обычное алюмоборосиликатное стекло. Щелочная среда рабочего раствора принимает только волокна на основе циркония. Если вы ошибетесь при выборе стекловолокна, срок службы фибробетона сократится на порядок.

 

Рекомендации по применению фиброволокна

Для армирования пола в промышленных локациях используют неметаллическое волокно диаметром от 12 до 40 мкм. Фиброволокно аналогичного сечения вводят в ячеистые бетоны. Самые тонкие волокна, диаметром до 3 мкм и длиной 1,5-2 мм вводят в жидкие обои, предупреждая растрескивание после высыхания. В тротуарную плитку и другие штучные изделия вводят микроарматуру сечением 6-20 мкм и длиной 3-12 мм. В теплые полы и ЖБИ — волокна 30-70 мкм, длиной 12-18 мм. Сухие строительные смеси укрепляют фиброволокном диаметром 20-30 мкм, длиной от 3 до 12 мм.

Длина фиброволокна определяется нагрузкой. Мелко нарубленную микроарматуру длиной до 12 мм используют для масштабирования устойчивости к растяжению на кручение или изгиб, однако бетон сохраняет базовую хрупкость. Изменить эту ситуацию может переход на фиброволокно длиной 20-50 мм, которое увеличивает гибкость готового изделия или стяжки. Как вариант – комбинированное армирование – например 20 кг стальной фибры + 600 грамм полипропиленовой решают проблему армирования бетонных полов с небольшой статической нагрузкой.

Для борьбы с усадочными и температурными трещинами используют фиброволокно разного типа. Если обычная арматурная сетка уменьшает количество трещин только на 6%, то металлическая фибра повышает этот показатель до 25%. Лучше всего с трещинами борется полимерное волокно, снижающее их объем на 90%.

Повышение рекомендуемого расхода (кг/м3) в два раза придает бетонной конструкции сейсмостойкость, а также совершенно иные показатели теплостойкости и звукоизоляции. Повышенный расход снижает усадку и повышает несущую способность ЖБИ, но чрезмерная трата дорогого волокна повышает стоимость монолита или штучных изделий, поэтому в большинстве случаев строители ориентируются исключительно на рекомендуемый расход фиброволокна или проволоки, который зависит от типа арматуры.

Сколько фиброволокна добавляют в раствор

В строительном деле приняты следующие нормы расхода микроарматуры любого типа:

 

Тип армирующей присадки

Рекомендуемый диаметр, мкм

Расход на кубометр, кг

Базальтовое волокно

12-20

1,5

Полипропиленовое волокно

20–30

0,9

Стальная фибра

300–1200

20-120

Стекловолокно

20–30

0,9

 

Для стяжки промышленного типа, которую заливают на складах, в цехах, в гаражах и аналогичных локациях норма расхода неметаллической фибры меняется в пределах от 0,6 до 1,5 килограмма в зависимости от типа фибры. Аналогичные нормы расхода подходят для стяжки теплого пола. Повышение поверхностной прочности с целью защиты от трещин и температурных деформаций обеспечивает 0,9-1,0 килограмма фибры. В ячеистые бетоны добавляют 0,6 кг на куб, столько же вводят в жидкие обои и тротуарную плитку. В шпаклевку и штукатурку добавляют до килограмма волокна. Расход стальной фибры выше на порядок.

Добавление порции микроарматуры в раствор осуществляется:

  • на этапе приготовления сухой смеси, когда в бетономешалку засыпают песок и цемент, к которым добавляют армирующее волокно, воду и щебень или гравий;
  • вместе с водой, когда фибра смачивается и вводится в сухую песчано-цементную смесь;
  • на этапе перемешивания рабочего раствора, когда вода превратила сухой песок и цемент в однородную, пластичную массу.

Для равномерного распределения волокон по рабочему раствору необходимо увеличить время замешивания бетона. Чтобы бетон не начал схватываться в процессе замешивания, в него добавляют пластификаторы, тормозящие процессы образования цементного камня. Максимальные значения рабочих характеристик монолита или ЖБИ возможны только при распределении микроарматуры по всему объему рабочей смеси, поэтому у каждого бетонщика есть свои приемы обращения с этой добавкой.

8 советов по использованию фибры для бетона

  1. Диаметр, длина и тип фиброволокна выбираются по назначению рабочего раствора, который усиливается подобной микроарматурой. Нельзя купить мешок фибры и сыпать его в любую заливку.
  2. Комбинированная микроарматура дает существенно лучшие результаты, особенно в плане повышения прочностных характеристик и несущей способности. Например, полипропиленовая нить и стальная в паре работают куда лучше, чем по отдельности. Ведь эти сорта микроарматуры компенсируют собственными преимуществами свои же минусы.
  3. Независимо от момента введения волокна в бетон, бетономешалка должна перемешивать песок, цемент и фибру в течение 8-15 минут. Это требование распространяется даже на сухую смесь.
  4. Микроарматуру вводят в сухую смесь или раствор небольшими порциями. Если одним махом засыпать в бетономешалку весь рекомендованный объем, волокна собьются в один ком, нарушая равномерность армирования монолита или штучного изделия.
  5. Классическая пропорция волокна и бетона — килограмм на метр кубический, но вес мироарматуры можно уменьшить, используя пластификаторы, или увеличить, добиваясь высокой сейсмостойкости и морозостойкости.
  6. Для распределения фибры по штукатурному раствору можно использовать не бетономешалку, а обычный строительный миксер. Аналогичным образом поступают в случае приготовления небольшой порции.
  7. Фиброволокно снижает текучесть, несмотря на введенные пластификаторы, поэтому армированный бетон нужно использовать сразу же после перемешивания.
  8. Фибробетон выходит на расчетную прочность за 14 суток, но уже на пятый день с момента приготовления раствора стяжку или штучное изделие можно использовать по назначению.

Может ли фибра вытеснить традиционную арматуру?

Высокие прочностные характеристики фибробетона позволяют говорить о полной замене классической арматуры волокном. Однако фибру можно назвать только теоретическим конкурентом стальной или стеклопластиковой арматуры. Ведь ни один строитель не рискнет дать оценку равномерности распределения микроарматуры по всему объему конструкции из бетона. Причем неравномерное распределение характерно и для легкой полипропиленовой фибры, и для стальной проволоки.

Из-за проблем с равномерностью распределения фибробетоны не могут быть конкурентами железобетонным конструкциям, принимающим несущую нагрузку. Из армированного только микроарматурой бетона не делают фундаменты, несущие балки и колонны, а также плиты перекрытий. В этом случае строители обращаются к традиционному армированию, прочностные характеристики которого можно рассчитать с высокой точностью.

В нагруженные конструкции фиброволокно допускается только в роли присадки, повышающей пластичность, снижающей усадочные деформации и склонность к образованию трещин. Однако в сегменте ненагруженных изделий микроарматура составляет серьезную конкуренцию классическому армированию.

Полное вытеснение фиброй классической арматуры оправдано при заливке садовых скульптур, декоративных или тротуарных плит, садовых дорожек, бордюров, подъездов к гаражу, дорог с низкой пропускной способностью. Такое армирование допускается при устройстве промышленного и теплого пола, а также в качестве стяжек, усиливающих изношенное напольное покрытие склада, автостоянки, цеха или гаража.